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ON THE INCLUSION OF ADDITIONAL DATA IN
LINEAR REGRESSION WITH UNEQUAL VARIANCES

by

E. RAMISCAU

1. Introduction, Often, the assumption of equality of vari­
ances of errors (homoscedasticity) in multiple linear regression
misrepresents the real behaviour of the data concerned. It
may be known from previous experience or through some rea­
sonable deductions that the error variances are not equal and
that they are approximately equal to known fractions of an
unknown constant, say, lT2• If these error variances are denoted
by lTI 2 (i = 1, 2, ... , n ) where n is the number of observations,
then we may write

1
lTi2 = (--) lT2 (i = 1,2, ... , n).

WI

The WI'S are thus assumed to be known or estimable constants
• and their square roots are called the "weights" for each of the

observations. These weights may be estimated by repeated
trials. A method of estimating these constants from the repeated
observations was given by Baker [2]. With these weights
known, the estimates of the regression parameters and their cor­
responding variances could be found using the popular method
of least squares. Throughout this paper, some of them prob-

.. lems involved "in the inclusion of additional data will be con­
sidered assuming that Wi'S are known or estimable.

2. The Problems. When the data obtained do not yield
estimates of the regression parameters with the desired degree
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of precision, a solution would be to take additional observations
to supplement the one already had. Consequently, two prob­
lems arise: (1) that of ascertaining the number of additional

observations to be taken and (2) that of making the adjust­
.ments for the inclusion of additional observations with the
Ieast labor. The second problem has already been considered
by Plackett in 1950 in the case where the assumption of equality
.of variances is satisfied. Plackett's approach is used to develop
.a solution for the same problem when the variances are equal
to (l/wl:!)a:!, where Wi (i = 1,2, ... , n) are known or estimable

.constant and (T
2 is unknown. The first problem is also consi­

.dered and a method presented. The method, however, applies

only to simple linear regression although it is conjectured that
the method may be extended to cover the general case with
some limiting conditions.

3. Review of Literature, Let the observed values of a
variable y be represented by

s

YI = :s {3jXiJ + fi (i = 1, 2, ... , n).
j=i

In matrix form,

•

•

•
Y = X{3 + e

where

(l) ,

The vector of random errors e will be distributed with mean
,() and covariance matrix V, a positive definite matrix. A spe­

cial case of this is when V = r?W-\ where

•

•
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W-1 o

o ... 0

1
... 0

1
o 0 ...

and <r~ is unknown. In this case, the £i'S are un correlated but
with variances (Ti~ = (l/wd<r2 (i = 1, 2, ... , n), where the
Wi'S are known constants. Since the variances are positive, it
follows that the Wi'S are all positive. Hence, the diagonal
matrix W-l is a positive definite matrix.

Before going further consider the matrices associated with
W·1 . Let

• w

It is clear that

•

..

w'w W = I~:..~~.:.: ..~.
\ 0 O ... w;

1
o ... 0

1
o ... 0

W·l =

1
o 0 ...

w"

•

4. On the Estimation of Regression Parameters. Since the
parameters are unknown, they must be estimated and, likewise,



48. E. RAMISCAL

••

they must also have estimates of their standard errors.
Markoff [5] had shown that the best linear unbiased estimator
of f3 is the estimate of f3 which minimizes the sum of squares

/Wf = (Y - X(3) 'W (Y - X(3).

This method of estimation is known as the method of least
squares. Since the time of Gauss, this method has been one
of the most useful tools in statistical work. The early justifica­
tion of this method was based on the assumption that all the
variables Yi (i = 1, 2, ... , n) are independent and normally
distributed. This assumption had been shown inessential from
the point of view of least squares. Markoff made a big step
forward by freeing the method from the assumption of normal­
ity and equality of variances. Neyman [6] generalized
Markoff's theorem to multiple linear regression the proof of
which was published by David and Neyman [3] in 1938.
Aitken [1] made the last step in generalizing the theory of
least squares by considering the case where the variables are
both correlated and have unequal variances.

The value of f3 that minimizes f'Wf is given by the solution
to

'0
-- (f'Wf) = 0
'Of3

from which is obtained the relation

"X'WXf3 = X'WY (2)

,\ .\

where f3 is the least estimate of f3. If we let S = X'WX, then
(2) may be written as

•

•

•

•

provided that S is non-singular. The covariance matrix of the
estimates is given by

f3 = S·lX'WY

.\

V( (3) = (12S·1

(3)

(4)

• I

j

I

•
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., and the unbiased estimate of (T~ based on the least squares esti­
mate of (3 is

n-s

A •

(Y - X(3)'W(Y - (3)A

(T~ = ---------- (5)

It has been shown by Markoff that among all linear unbiased
estimates of (3, the least squares estimate has the smallest vari­
ance..,

5. On the Adjustments for the Inclusion of Additional Data.
Plackett in 1950 gave a method of adjusting the estimates of
the parameters and their covariance matrix when additional
m < n observations are included. One of his assumptions was
that of homoscedasticity and this considerably limits the appli­
cability of his results. Plackett's method should therefore be
extended to a more general case .

• 6. Extension of Plackett's Theorem to the Non-Homosce­
dastic Case. For this, set

E(Z) = F(3 (6 )

where F is an m by s matrix of constants, the counterpart of X,
• and Zan m by 1 column matrix or vector, the counterpart of Y.

Let

P= (PO~"})
o 0 ... Pill

be the matrix of weights for the new set of m observations
which is also equal to p'p where

p=

•
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(1)by Y..nd ( 1)by X* (7) .

..

The model appropriate for this combined vector of observations
will be

Y* = X*/3 -I- ~*

and the combined set of weights will be

(8) •

where

s:

The new estimate of f3 is #* = S*-lX'* D Y* and its variance is
1\

V(/3*) = (12S*-1, where I S* I = IX'*DX* I ~ O. Lastly, we

define R = pFS-IF'p' and R* = pFS*-lF'p'.

Adjustments. Consider •

•

RR* = pFS-IF'p'pFS*-lF'p' = pFS-l(F'PF) S*-'lF'p'

Since S* - S = F'PF, equation (9) reduces to

RR* =R-R*

(9) .

(10) .

Now consider (Jm + R) (L, - R*) = (1m + R - R*) - RR* ..
= 1m which gives 1m - R* = (lm + R)", (11)

since 1m + R evidently possesses an inverse. Postmultiplying
(11) by pFS-l we obtain

(lm + R)-l pFS-l = pFS*-l.

•
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S-IF'p' (L, + R)-1 pFS-l = S-{lF'p'pFS*-l = S-l - S*-I1, that
is, S-I_S*-'l = S-IF'p' (1m + R)-lpFS-l (13)

which is a convenient computing formula for the necessary
A

changes in the covariance matrix of ~.

It can be shown that the changes in the estimate of ~ will be
A A It.

~* - ~ = S-IF'p' (1m + R)"l p(Z - F~), (14)

and that the new sum of squares of residuals will be

A A

M* = M + (Z - F~) 'p' (L, + R)-1 p(Z - F~), (15)

where

7. A Numerical Example. A set of 30 observations was
constructed and the resulting normal equations are

•

•

A A

M = (Y - X~)'W(Y - X#).

The new estimate of u 2 will therefore be

(\,.u-= M /(n + m - s)• •

(16).

(17).

/\ "1
135 211.22 462.36 2,611.8 5,949.87 ~o 37,194.97

/\
337.2 731.9 4,044.06 9,458.89 f31 59,411.64

• /\
129,121.031,859.91 8,922.66 20,321.99 /32 =

54,641.48 115,455.46
/\

731,310.35f33

297,802.44
/\

1,678,572.64~4

S
/\
~ b

•
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•
where b = X'WY. Using the square-root method, the estimates
arE:!

r 120.83581

and

/\ "1
{30

/\
{31

/\ /\
{3 - (32

I
20.31359

6.05208

2.99189

1.00541 •

[

.5985294 -.2752585 -.0045457
.1875810 -.0051431

.0037982

L

-.0075708
.0019827

-.0000413
.0002646

.00003601
-.0008381

.0000300
-.0000116
.0000317 J

The estimate for a 2 is given by

75.5234
---=3.021

30 - 5

and

/\
a = 1.738.

Adjustments. An additional set of 6 observations was taken
and given the following

TABLE 2. ADDITIONAL DATA

•

•

No.

1
2
3
4.
5
6

Xl

1.39
1.66
1.41
1.76
1.77
1.70

x::!

1.20
5.16
5.80
4.97
3.54
5.95

24.02
15.40
22.08
27.66
14.29
28.10

30.12
66.91
48.34
55.93
49.26
61.46

Y

.267.24
298.97
298.40
325.79
270.37
337.84

p

3
8
6
7
8
1

•

..
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Using equation (13), we get

53

r·0875804 -.0326636 -.002248 -.0015548 -.0000458\
1 1 I .02227 -.0016173 .0004143 .0000989]

S - -S = .0009092 .0000138 .0000434j
:I: I .0000537 -.0000035·

L .0000036

Therefore

•
_1 l( .5109490

S =
*

-.2425949 -.0022977
.165311 -.0041258

.002889

-.006016
.0015684
-.000551
.0002109

.0000818
-.0007392
-.0000134

.0000081

.0000281

Using (19), we obtain

•

•

Therefore

1\
f3

:I:

1\
f3

:I:

1\

f3

r -.20195

1l
·20098

-.03384
.00137

-.00114)

120.63386
20.51457
6.01824
2.99326
1.00427

Using equation (25), we obtain

1\.>
M = 75.5234 + 4.59016 = 80.11356, a-

':' *
/\

Hence a = 1.6076.
*

80.11356
--- = 2.5843.
30 + 6 - 5

•

8. A Suggested Method of Estimating the Number of Ad­
ditional Observations to Meet a Certain Degree of Precision
for the Estimate of f3. For simple linear regression, it is known
that when the errors are normally distributed with mean 0 and
variance Uj2 (i = 1, 2, ... , n), the least squares estimate of f3
is distributed with mean f3 and variance a2/(~Wi(Xi - X)2
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where X

where Xi

/\
f3 ,..., N«(3 a~/~WiXi~)

Xi - X. Also

(18)

/\ /\
t = «(3 - (3)/[ a / (:SWiXi)~] (19}

is distributed like a Student's t distribution with (n-2) degrees
of freedom.

Suppose that we want the new estimate; to have a 900/0 •
probability of being different from f3 by no more than a. Then
t will be approximately 1.70 and from (19), we get

t a ( , 0)'=- ~WX-"
/\ i j

a

or

(20)

Since

for a given n,

(21)'.

If n, is the number of original observations and n2 is the re­
quired number of observations for the given precision, then,
for n = n~, (21) becomes

(22) ..

n.") n.)

The terms £WiX~ and £w.X, are not known. We might use.

however, the approximate relations

•

..

n2 n 2 TIl TIl

~ w.X, = (:S WJ ~Wi) ~ w.X, (23)

•
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and

(23).

By. substituting (23) and (24) in (22) and simplifying, we ob­
tain the relation

(25).

Thus, the additional number of observations is given as the
sum of their weights

n n
1

6. w = ~Wi - ~Wi' (26)

The additional observations should therefore be chosen such
that the sum of their weights will be equal to 6.w.

If the error variances are equal, the weights can be taken
as unity and (25) becomes

n ~ :!.I\'.!.

n~ = (nJ! ~xi)(t/a) IT

• and the number of additional observations will be

(28)

n~

9. Remarks. We notice that the value of n~ or :'. WI that
we get from (27) or (25) is based on the assumptions that
equations (23) and (24) are true. It follows that if these
stringent assumptions are not satisfied, the true probability
will, in general, not be equal to the one imposed. To get the
true probability, we substitute the observed values in (22) and
solve for t. The computed t, together with the known (n, - 2)

degrees of freedom, upon looking into a table of Student's t
distribution, shall give the true probability.

•
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